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The implementation of Artificial Intelligence (Al) and Augmented Reality
(AR) in educational settings has become an innovative approach for
individualized learning, providing immersive and adaptable experiences
for students. Understanding the effects of cognitive load and adaptivity on
learning outcomes in Al-enhanced AR environments is essential for
refining instructional strategies. This study investigated the relationships
between cognitive load, adaptivity, and learning gains among 258 English
as a Foreign Language (EFL) learners using SmartPLS. The results
indicated that intrinsic cognitive load (B =0.726, p <0.001) and extraneous
load (B = -0.432, p < 0.001) had significant effects on learning gains,
whereas germane load showed a positive influence (f = 0.314, p < 0.01).
Adaptivity also contributed significantly, with learners’ perceptions of
adaptivity (B = 0.578, p <0.001) and system personalization (f = 0.611, p
< 0.001) emerging as the most influential subcomponents, though its
overall impact was smaller than that of cognitive load. These findings
emphasize the importance of managing cognitive load and integrating
tailored adaptive features to maximize learning outcomes in Al-enhanced
AR settings. Strategies that reduce extraneous load and enhance germane
load can substantially improve learning experiences for lower-intermediate
EFL learners.
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Introduction

The rapid growth of educational technology has created new potential to improve teaching and
learning, with Al and AR leading these innovations (Bamanger, 2025; Tan et al., 2025). As
education evolves, there is growing acknowledgment of the transformative potential of modern
technologies in conventional learning contexts, with research highlighting how digital and
intelligent technologies are reshaping educational practices, promoting new pedagogical
designs, and enhancing engagement and learning outcomes across diverse settings (Celik &
Baturay, 2024). Personalized learning, which tailors educational experiences to the specific
requirements and preferences of individual learners, has emerged as a primary emphasis in the
quest for enhanced learning outcomes, with meta analytic evidence showing that technology
enhanced personalized learning significantly improves cognitive and noncognitive skills and
overall academic performance in higher education contexts (Tudor et al., 2025). Al-driven
personalized learning has the potential to customize instructional material in accordance with
the learner's existing knowledge, preferred learning method, and cognitive abilities
(Halkiopoulos & Gkintoni, 2024). Al-driven personalized learning systems can create
educational tools that are exceptionally effective, engage learners, and optimize their cognitive
load, adaptability, and learning outcomes when integrated with AR, which enriches the learning
experience through immersive, interactive, and spatially enhanced environments (Cinar et al.,
2024).

Cognitive Load Theory asserts that excessive cognitive demands can impede learning by
exceeding the limited capacity of working memory, making it difficult for learners to process,
integrate, and transfer new information effectively (Sweller et al., 2019). Cognitive load theory
asserts that high cognitive demands might impede learning by overloading learners' mental
capacity (de Jong, 2010). Consequently, managing cognitive load is essential for promoting
successful learning, based on Cognitive Load Theory, which posits that learning is hindered
when instructional demands exceed the limited capacity of working memory. Cognitive
overload occurs when learners are required to process more information than their cognitive
resources allow, leading to reduced retention and impaired performance (Sweller et al., 2011;
Evans et al., 2024). In contrast to such fixed instructional demands that may induce overload,
adaptivity in learning environments refers to the ability of educational systems to dynamically
adjust instructional content, pacing, and support in response to learners’ ongoing performance,
difficulties, and needs, thereby helping to optimize cognitive processing and learning outcomes
(Demartini et al., 2024). Adaptive learning systems can maintain learners' engagement at an
ideal difficulty level, reducing irritation while fostering profound involvement (Ezzaim et al.,
2023). Ultimately, learning gains signify the enhancements in knowledge, abilities, and
competences derived from educational experiences (Evans et al., 2018). These improvements
are often evaluated via assessments or performance assignments that gauge the learner's
comprehension and application of the material (Ilie et al., 2024). The relationship among
cognitive load, adaptability, and learning outcomes is essential, as research indicates that
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adaptive learning approaches that dynamically adjust to individual learner needs can reduce
unnecessary cognitive burden and contribute to more effective processing and improved
educational results in technology-enhanced environments (Chernikova et al., 2025; Zhu et al.,
2025).

The incorporation of Al and AR into personalized learning environments could potentially
support improvements in educational outcomes. The immersive features of augmented reality
may improve learning by offering interactive, contextually rich experiences that facilitate a
deeper comprehension of abstract ideas and intricate information (Fidan & Tunce, 2019).
Simultaneously, Al systems can evaluate data from learners’ interactions and adaptively modify
instructional material to enhance learning experiences. Research on Al-driven adaptive learning
technologies shows that machine learning algorithms analyze learner activity patterns and
performance data to tailor content delivery, pacing, and feedback to individual needs (Gligorea
et al., 2023). Nevertheless, empirical evidence on the synergistic effects of Al-driven
personalized learning in augmented reality settings remains relatively limited, indicating a need
for further investigation. Existing studies increasingly explore the integration of Al and
augmented reality in educational contexts; yet, relatively few have examined how their
combined use influences cognitive load, adaptivity, and learning outcomes within personalized
learning environments (Liu et al., 2025; Gkintoni et al., 2025).

Many studies have examined the influence of augmented reality on learning outcomes,
demonstrating generally positive effects on comprehension and academic performance (e.g.,
Gandolfi & Ferdig, 2025; Li et al., 2021; Tobar-Mufioz et al., 2017). However, relatively few
of these investigations have directly addressed the significance of cognitive load or the potential
of adaptive features to alleviate overload in these contexts. Additional studies have examined
AD’s capacity to personalize learning and its impact on cognitive load and academic
achievement (Kaplan et al., 2021; Li et al., 2021); nevertheless, there is a deficiency of research
that integrates AR’s immersive learning environment into this paradigm. Despite the increasing
body of research examining Al and AR individually or in combination, relatively few studies
have explicitly explored how their integration affects cognitive load, adaptivity, and learning
outcomes within personalized learning environments (Farhood et al., 2025; Wang et al., 2025).

Consequently, further research is warranted to investigate the potential benefits of
combining Al and AR in learning settings, particularly regarding their potential to support
cognitive processing, adaptive learning, and enhanced educational outcomes. This study seeks
to explore the associations between Al-driven personalized learning in augmented reality
environments and learners’ cognitive load, adaptability, and learning outcomes through SEM
analysis. To this end, the following research questions are formulated:

e What is the relationship between cognitive load and learning gains among EFL learners?

e What is the relationship between adaptivity and learning gains among EFL learners?
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Literature review

Al-Personalized Learning in Education

Educational technology research has increasingly prioritized the potential of Al to transform
personalized learning environments by enabling adaptive, data driven instruction tailored to
individual learners’ needs (Gligorea et al., 2023). The objective of personalized learning is to
transcend conventional one-size-fits-all approaches by accommodating the distinctive
strengths, interests, and requirements of individual learners (Shemshack & Spector, 2020).
However, existing research often assumes that personalization automatically leads to improved
learning outcomes without sufficiently interrogating the pedagogical conditions under which
such benefits emerge. Al facilitates this customization by evaluating learner data (e.g., test
scores, interaction patterns) and offering feedback or modifying the learning trajectory (Das et
al., 2023); however, the effectiveness of these mechanisms depends heavily on the validity of
the data sources and the interpretability of algorithmic decisions.

Recent studies suggest that Al has the potential to enhance student engagement and
learning outcomes, although findings vary across contexts (Heydarnejad, 2025a; Heydarnejad,
2025b; Jaboob et al., 2024). This variability indicates that Al-driven personalization is not
universally effective and may amplify existing instructional inequalities if contextual factors
are overlooked. In contrast to non-adaptive learning environments, Tan et al. (2025) illustrated
that Al-powered systems that dynamically adapt content delivery based on individual
requirements and analyze learners’ progress achieved superior performance on assessments.
Nevertheless, such performance gains are often measured through short-term outcomes, leaving
questions about long-term learning transfer and sustainability insufficiently addressed.

Additionally, the capacity of Al to offer immediate feedback is frequently cited as essential
for promoting learner autonomy and supporting formative assessment practices (Ba et al.,
2025). Yet, over-reliance on automated feedback may risk reducing opportunities for reflective
learning and meaningful human—teacher interaction. The integration of Al into learning systems
is further beset by obstacles, including implementation complexity, ethical concerns, and
algorithmic bias. Accordingly, Gerlich (2025) emphasizes that effective Al application requires
a nuanced understanding of deployment contexts, as the educational impact of Al-driven
systems is highly context dependent. This underscores the need for future research to move
beyond technological affordances and critically examine how instructional design, data
governance, and contextual alignment shape Al’s educational value. To maximize effectiveness,
the quality and quantity of data, as well as the design of underlying algorithms, must be
carefully aligned with clearly defined learning objectives.

Augmented Reality (AR) in Education

Unique opportunities for personalized learning are provided by AR, which overlays digital
content on the real world, resulting in interactive, immersive, and context-rich learning
environments (Bacca-Acosta et al.,, 2022). While AR is frequently portrayed as inherently
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engaging, this assumption often overlooks how instructional design mediates the relationship
between immersion and meaningful learning. AR promotes direct engagement with content,
which can enhance learners’ comprehension of intricate concepts and spatial awareness (Al-
Ansi et al., 2023); however, empirical evidence suggests that these benefits are uneven and
highly sensitive to task complexity and learner characteristics.

The efficacy of AR in educational contexts has been supported by recent studies. Hwang
and Chien (2022) demonstrated that AR use in science education enhances learning experiences
by enabling visualization of abstract concepts. Despite these promising findings, much of the
existing research relies on controlled experimental settings, raising questions about scalability
and transferability to authentic classroom environments. Beyond cognitive benefits, AR has
been shown to increase student motivation and foster a sense of agency through interactive
simulations (Gandolfi & Ferdig, 2025). Yet, motivation gains do not consistently translate into
sustained learning improvements unless they are accompanied by structured pedagogical
guidance. Similarly, AR’s capacity to create context-rich environments supports experiential
learning and real-world problem-solving (Alkhabra et al., 2023); nevertheless, poorly aligned
contextual elements may distract learners and dilute instructional focus.

Despite its considerable potential, several challenges constrain the effective
implementation of AR. One major obstacle is the requirement for technological infrastructure
capable of supporting Al-driven personalized AR applications, including appropriate devices
and software (Arena et al., 2022). When such infrastructure is inadequate, AR environments
may increase extraneous cognitive load and limit system adaptivity, thereby constraining
learning gains in AR-based EFL contexts. Furthermore, the success of AR experiences is
contingent upon pedagogically sound designs that are meaningfully integrated into the
curriculum (Chang, 2021). This highlights a persistent gap in the literature between
technological innovation and instructional coherence, suggesting that future research should
critically examine not only what AR can do, but under what conditions it meaningfully supports
learning.

Cognitive Load and Personalized Learning

Cognitive Load Theory, proposed by Sweller (1988), posits that the human brain has a limited
capacity for information processing, implying that instructional design must regulate cognitive
demands to improve learning efficacy. While this principle is well established, its application
in personalized learning environments remains theoretically underexplored and empirically
inconsistent. In tailored learning settings, managing cognitive load is particularly critical, as
learners may experience overload when confronted with material that exceeds their cognitive
capacity, resulting in diminished engagement and retention (Zhu et al., 2024). Personalization
alone does not guarantee optimal cognitive load management and may, in some cases,
exacerbate cognitive demands if adaptations are poorly calibrated.

Recent research has examined how Al-driven tailored learning systems may alleviate
cognitive stress. For instance, Gkintoni et al. (2025) investigated the role of Al in regulating
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cognitive load by adaptively modifying material complexity and learning tempo according to
learners’ performance. Their findings suggest that adaptive systems can reduce cognitive
overload and enhance learners’ ability to focus on germane learning activities. However, studies
in this area often prioritize performance-based outcomes over direct measures of cognitive
processing, thereby limiting insight into how learners internally allocate cognitive resources.
Consequently, the mechanisms through which Al adaptations support deeper learning remain
insufficiently specified.

Similarly, AR-based interventions provide illustrative examples of how technological
affordances may both support and challenge cognitive load regulation. For example, AR has
been shown to reduce extraneous cognitive load by incorporating visual and interactive
elements that clarify complex material, thereby facilitating information processing
(Gonnermann-Miiller & Kriiger, 2024). Yet, the multimodal richness of AR environments can
simultaneously introduce additional sources of cognitive demand, particularly when learners
must coordinate multiple streams of information. Accordingly, while adaptive systems and AR
may assist in regulating cognitive load, they must be carefully designed to avoid increasing
intrinsic cognitive load, which is inherent to the complexity of the learning content. For
instance, Kim et al. (2024) demonstrated that although AR systems provide visual cues and
interactive simulations, they may overwhelm learners when task complexity exceeds their
cognitive capabilities. These findings underscore the need for a more nuanced balance between
personalization, content complexity, and learner readiness when integrating Al and AR into
instructional design.

Adaptivity and Learning in AI-AR Environments

Adaptivity is a key component of personalized learning environments, as systems are designed
to continuously adjust to learners’ evolving needs. Recent advancements in Al and AR
technologies have enabled increasingly adaptive learning experiences (Ouyang et al., 2022;
Ouyang & Jiao, 2021). However, the presence of adaptivity alone does not guarantee
instructional effectiveness, as its impact depends on how learner data are interpreted and
translated into pedagogically meaningful adjustments. Al-driven personalized systems utilize
data from student interactions to assess progress and modify learning content and difficulty in
real time (Kabudi et al., 2021), yet such data-driven adaptations may oversimplify learning
processes if they rely primarily on observable behaviors rather than deeper cognitive indicators.

Previous studies examining adaptivity in AI-AR environments suggest potential benefits
for learner engagement and achievement. For example, Ironsi (2023) investigated an Al-
powered AR system in an academic context and reported that adaptive learning environments
supported learners’ engagement with complex concepts by dynamically adjusting instructional
content based on individual progress. The study further indicated that adaptivity can promote
deep learning by maintaining an appropriate level of challenge without overwhelming learners.
Nevertheless, these conclusions are largely drawn from short-term engagement and
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performance measures, leaving open questions about the durability and transferability of such
learning gains.

Similarly, research on Al-powered adaptive systems provides illustrative evidence of
motivational benefits. Eltahir and Babiker (2024) found that adaptive systems adjusting content
based on learner data were associated with higher motivation and performance than static
learning environments. While these findings are promising, they also raise concerns about the
extent to which adaptive mechanisms can accommodate diverse learning strategies and avoid
reinforcing narrow learning pathways. Taken together, the literature suggests that adaptivity is
most effective when embedded within well-aligned instructional designs that balance
responsiveness, cognitive challenge, and learner autonomy, rather than functioning as a purely
technical feature of AI-AR systems.

Learning Gains in AI-AR Environments

Learning gains denote the quantifiable improvements in knowledge and skills following an
educational intervention (Jaboob et al., 2024). Al- and AR-based personalized learning systems
have been widely reported to influence learning outcomes by enhancing instructional
experiences and affording learners greater autonomy over their learning trajectories (Poupard
et al., 2024). However, reported learning gains vary considerably depending on instructional
context, assessment design, and the extent to which personalization is pedagogically aligned
with learning objectives. For example, Islim et al. (2024) demonstrated that augmented reality
environments can improve learning outcomes in disciplines such as physics and mathematics
by enabling learners to interact with visual models that support conceptual understanding.
These findings underscore the potential benefits of visual interactivity, yet they also indicate
the need for caution regarding the generalizability of such gains beyond domain-specific tasks
or short-term assessments. Similarly, Holmes et al. (2019), in their review of Al in education
research, reported that Al-driven personalized learning systems were associated with
improvements in test scores and retention rates, particularly when systems dynamically adapted
to learners’ progress. Nevertheless, the review also suggests that many studies rely on
standardized outcome measures, which may not fully capture higher-order learning or long-
term knowledge transfer.

Moreover, the integration of AR with Al-driven personalization is often assumed to amplify
learning gains through increased immersion and engagement, yet empirical evidence remains
context dependent. For instance, Lin and Chen (2024) found that Al-driven AR systems
improved students’ performance in problem-solving tasks by providing adaptive learning
environments tailored to individual needs. Despite these promising findings, it remains unclear
how such systems scale across diverse learner populations and whether increased immersion
consistently translates into durable learning improvements. Taken together, the literature
indicates that learning gains associated with AI- and AR-based personalization are contingent
upon careful instructional design, meaningful assessment strategies, and alignment between
technological affordances and cognitive learning processes.
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Method

Participants

The participants consisted of 258 EFL learners enrolled in lower-intermediate English courses
at multiple private language institutes in Iran. The learners were aged between 15 and 18 years,
including 116 females and 142 males. Initially, 287 learners were invited to participate in the
study; however, 29 incomplete or invalid responses were excluded during data cleaning,
resulting in a final sample of 258 wvalid cases. Participants were recruited from language
institutes located in Khorasan Razavi, Isfahan, Tehran, and Shiraz provinces, where they were
actively studying English as a foreign language. Prior to inclusion in the final sample, all
participants completed a brief screening questionnaire designed to assess their prior experience
with Al-supported learning tools and their access to AR-compatible devices (e.g., smartphones
or tablets). Only learners who reported prior exposure to Al- and AR-based educational
applications and confirmed regular access to AR-enabled devices were included in the study.
This screening ensured that all participants possessed the minimum technological familiarity
required to meaningfully engage with the Al-enhanced AR learning environment examined in
this research.

Instrumentation

The study employed an online questionnaire as the primary instrument for data collection. Prior
to administering the main scales, a screening section was included to ensure that remote
participants possessed adequate prior knowledge and experience with Al- and AR-based
learning environments. This screening assessed participants’ prior exposure to Al and AR
technologies, frequency of use, and self-reported competence in educational contexts.
Participants who did not meet the minimum experience criteria were excluded from the study.
Following the screening section, the questionnaire comprised three validated instruments
adapted for the context of Al-enhanced AR learning environments. Sample questions for each
instrument were included in the questionnaire to illustrate the constructs being measured.

Cognitive Load

Cognitive load was measured using a modified version of the Cognitive Load Scale developed
by Leppink et al. (2013). The scale assesses four dimensions: Intrinsic Load (5 items),
Extraneous Load (5 items), Germane Load (5 items), and Overall Perceived Cognitive Load
(10 items). All items were rated on a seven-point Likert scale. Minor wording modifications
were made to align the items with AI-AR learning tasks while preserving the original construct
definitions. The internal consistency of the scale in the present study was acceptable (o= 0.877).
Sample questions included: “The learning tasks in the Al-enhanced AR environment were very
complex.” (Intrinsic Load), “The way information was presented in the AI-AR system was
unclear or confusing.” (Extraneous Load), “The AI-AR activities helped me to better
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understand the learning material.” (Germane Load), and “Overall, using the AI-AR system
required a high level of mental effort.” (Overall Cognitive Load).

Adaptivity

Adaptivity was assessed using an adapted instrument grounded in the adaptive learning systems
framework proposed by Dominic et al. (2015). This framework conceptualizes adaptivity as a
system’s ability to dynamically personalize content, feedback, and learning pathways based on
learner performance and preferences. The instrument was tailored to reflect Al-driven real-time
personalization in AR learning environments. The scale consisted of four subscales: Learner
Perception of Adaptivity (5 items), System Personalization (5 items), Feedback Effectiveness (5
items), and Engagement with Adaptive Learning (5 items), measured on a five-point Likert scale.
The internal consistency of the scale was acceptable (o = 0.842). Sample questions included: “The
AI-AR system adapted the learning content to match my learning needs.” (Learner Perception of
Adaptivity), “The system personalized activities based on my previous performance.” (System
Personalization), “The feedback provided by the Al system helped me improve my learning.”
(Feedback Effectiveness), and “I felt more engaged because the learning system adjusted to my
progress.” (Engagement with Adaptive Learning).

Learning Gains

Learning gains were assessed using a self-report Learning Gains Questionnaire (LGQ) designed
to measure learners’ perceived improvements across multiple learning domains. The instrument
was adapted from established self-reported learning gains frameworks commonly used in
educational research and aligned with the instructional objectives of the AI-AR learning
environment. The LGQ comprised 30 items organized into six subscales: Cognitive Learning
Gains (5 items), Affective Learning Gains (5 items), Skill-Based Learning Gains (5 items),
Higher-Order Learning Gains (5 items), Comparative Gains (5 items), and Self-Reflection on
Learning Progress (5 items). All items were rated on a five-point Likert scale, ranging from 1
(strongly disagree) to 5 (strongly agree), with higher scores indicating greater perceived
learning gains. Sample items included “I gained a better understanding of the course content
through the AI-AR activities” (Cognitive Learning Gains), “The AI-AR learning experience
increased my interest in learning English” (Affective Learning Gains), and “I improved my
ability to apply what I learned in practical tasks” (Skill-Based Learning Gains). Additional
items addressed higher-order thinking, comparative learning experiences, and reflection on
progress. The internal consistency of the LGQ in the current study was acceptable, with a
Cronbach’s alpha coefficient of 0.867, indicating satisfactory reliability.

Evidence for validity was established through multiple procedures. First, content validity
was supported through expert review, whereby specialists in educational technology and
language learning evaluated the items for clarity, relevance, and alignment with the study
objectives. Minor revisions were made based on their feedback to improve item wording and
domain coverage. Second, construct validity was examined using factor-analytic procedures,

89



Technology Assisted Language Education TALE

90

which confirmed that the items loaded appropriately onto their intended subscales and reflected
the proposed multidimensional structure of learning gains. Finally, face validity was established
through pilot testing with a small group of learners, who reported that the questionnaire items
were understandable and representative of their learning experiences in the AI-AR
environment. Together, these results indicate that the LGQ demonstrates adequate validity and
reliability for assessing learners’ perceived learning gains in the context of AI-AR—supported
instruction.

Data Collection

An online survey was administered to all participants who passed the screening questionnaire
during the Fall semester of 2024. This method allowed the study to reach a diverse group of
learners, enabling them to complete the survey remotely at their convenience. All participants
provided informed permission and were told that their participation was entirely voluntary, with
the ability to withdraw at any moment without consequence. The participants were further
informed of the anonymity of their replies, and all data was anonymized prior to processing.
The questionnaire assessed cognitive load, adaptivity, and learning gains in Al-driven AR
learning environments using validated and context-adapted scales. Sample items were included
to illustrate how each construct was operationalized. Participants were apprised of the study's
objective, the voluntary nature of their participation, and the confidentiality of their responses
prior to completion of the online survey. In order to guarantee data integrity, only questionnaires
that were fully completed were retained for subsequent statistical analysis. Incomplete
responses were excluded from the analysis.

Data Analysis

The data gathered from participants was examined via Partial Least Squares Structural Equation
Modeling (PLS-SEM), with the SMART PLS program applied for statistical analysis. PLS-
SEM was used due to its appropriateness for examining intricate interactions across variables
with very limited sample sizes or on the case of deviation from normality (Hair et al., 2017).
The analysis adhered to a bifurcated methodology:

1. Measurement Model: The validity and reliability of the measurement model were
evaluated by the assessment of item outer loadings, composite reliability, and average variance
extracted (AVE) values. Furthermore, discriminant validity was assessed with the Fornell-
Larcker criteria and the HTMT ratio.

2. Structural Model: The structural model was assessed by analyzing the path coefficients
and R? values. Bootstrapping was used to assess the statistical significance of the path
coefficients. Effect sizes (f*) were computed to evaluate the strength of the connections between
the variables.
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Findings

This section presents the study’s findings on the effects of cognitive load and adaptivity on
learning outcomes in AR environments for EFL learners. Data were analyzed using PLS-SEM
via SmartPLS, which allowed for the assessment of relationships among latent constructs and
their respective sub-dimensions. The Kolmogorov—Smirnov (K-S) test results for normality are
summarized in Table 1. In the following, key structural relationships are illustrated in Model 1
and Model 2, which provide visual summaries of the significant paths between constructs and
their contributions to overall and sub-dimension learning gains.

Table 1
Results of the Kolmogorov-Smirnov (K-S) Test for Normality
Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed)
Intrinsic Load 0.182 0.000
Extraneous Load 0.138 0.000
Germane Load 0.169 0.000
Overall Perceived Cognitive Load 0.127 0.000
Cognitive Load 0.107 0.000
Learner Perception of Adaptivity 0.104 0.000
System Personalization 0.079 0.000
Feedback Effectiveness 0.120 0.000
Engagement with Adaptive Learning 0.111 0.000
Adaptivity 0.146 0.000
Cognitive Learning Gains 0.109 0.000
Affective Learning Gains 0.068 0.005
Skill-Based Learning Gains 0.144 0.000
Higher-Order Learning Gains 0.136 0.000
Comparative Gains 0.133 0.000
Self-Reflection on Learning Progress 0.119 0.000
Learning Gains 0.066 0.009

The K-S test indicated that most measures in this study deviate from a normal distribution, with
the majority of Asymp. Sig. values being 0.000. While this suggests that the data are not suitable
for parametric tests that assume normality, the use of PLS-SEM via SmartPLS is appropriate,
as it is robust to violations of normality and can handle non-normally distributed data for
analyzing relationships among latent constructs.

The following table presents the original sample loadings and T-statistics for various constructs,
including cognitive load, learner perceptions, system personalization, feedback effectiveness,
engagement with adaptive learning, and learning gains. These measures provide valuable
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insights into the significance and contribution of each question item to its corresponding

construct.
Table 2
Analysis of Question Loadings and T-Statistics
Questions Original Sample T -Statistics
C1 0.708 17.328
C2 0.710 15.258
Intrinsic Load C3 0.736 19.522
C4 0.764 25.766
C5 0.857 26.164
C6 0.767 28.466
C7 0.730 19.291
Extrancous c8 0.703 18.166
Load
C9 0.716 16.141
C10 0.624 12.433
Cl1 0.779 30.038
Cl12 0.743 17.747
Cognitive
Germane Load Cl13 0.848 29.559
Load
Cl4 0.680 16.210
Cl15 0.673 18.196
Cl6 0.722 18.587
C17 0.888 35.388
C18 0.896 37.307
C19 0.749 19.878
Overall €20 0.768 21.389
Perceived
Cognitive Load C21 0.816 27.280
C22 0.847 46.124
C23 0.769 20.203
C24 0.825 31.436
C25 0.673 14.630
Al 0.780 20.269
Learner A2 0.841 41.024
Perception  of A3 0.787 26.409
Adaptivity A4 0.853 40.372
A5 0.866 57.657
A6 0.823 31.219
Adaptivity A7 0.833 33.217
System A8 0.850 31.240
Personalization
A9 0.862 35.217
Al10 0.786 24.231
All 0.836 40.231
Feedback AL2 0.727 2777
Effectiveness
Al3 0.838 42311

Ny
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Al4 0.846 38317
Al5 0.858 36.367
Al6 0.737 25204
Engagement Al7 0.800 32.078
with  Adaptive Al8 0.559 15.976
Learning Al9 0.641 18.819
A20 0.865 44316
Learning Cognitive L1 0.689 13.086
Gains Learning Gains L2 0.724 16.524
L3 0.823 37.250
L4 0.754 28.622
L5 0.614 19.544
Affective L6 0.824 31.002
Learning Gains L7 0.810 33.875
L8 0.874 39.852
L9 0.767 21.640
L10 0.770 29.697
Skill-Based L11 0.742 26.644
Learning Gains L12 0.642 15.898
L13 0.684 17.491
L14 0.697 18.610
L15 0.812 39.425

Higher-Order L16 0.585 9.854
Learning Gains L17 0.646 10.420
L18 0.752 19.555
L19 0.797 26.626
L20 0.796 40.697
Comparative L21 0.751 28.981
Gains L22 0.651 14.333
L23 0.808 32.030
L24 0.779 29.075
L25 0.683 14.138
Self-Reflection L26 0.641 13.839
on  Learning L27 0.716 18.077
Progress 128 0.892 36.723
L29 0.672 15.025
L30 0.621 14.835

All measurement items demonstrated statistically significant loadings and provided strong
support for their respective constructs (Table 2). The Cognitive Load dimensions—including
intrinsic, extraneous, germane, and overall perceived cognitive load—exhibited generally high
factor loadings and substantial T-statistics, indicating that the items reliably captured different
aspects of learners’ cognitive processing. Similarly, the Adaptivity construct, encompassing
learner perception of adaptivity, system personalization, feedback effectiveness, and
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engagement with adaptive learning, showed robust indicator loadings, confirming the reliability
of these measures in representing adaptive learning features. The Learning Gains construct and
its sub-dimensions (cognitive, affective, skill-based, higher-order, comparative gains, and self-
reflection on learning progress) also demonstrated acceptable to strong loadings across
indicators, with particularly strong contributions observed for affective learning gains and
higher-order learning outcomes. Overall, these results confirm that the measurement model is
well supported, providing a reliable foundation for subsequent structural model analysis.

Table 3
Reliability and Validity Reports
Constructs Average Variance Cronbach's Composite
Extracted (AVE) Alpha Reliability

Intrinsic Load 0.573 0.786 0.857
Extraneous Load 0.503 0.883 0.915

Cognitive Load Germane Load 0.559 0.890 0.918
Overall Perceived 0.653 0.812 0.855
Cognitive Load
total 0.572 0.806 0.778
Learner
Perception of 0.622 0.705 0.811
Adaptivity
System 0.683 0.728 0.820
Personalization

Adaptivity Feedback 0.691 0.720 0.817
Effectiveness
Engagement with
Adaptive 0.604 0.711 0.801
Learning
total 0.641 0.848 0.874
Cognitive 0.524 0.718 0.814
Learning Gains
Affective 0.656 0.871 0.905
Learning Gains
Skill-Based 0.515 0.705 0.810
Learning Gains
Higher-

Learning Gains igher-Order 0.519 0.763 0.842
Learning Gains
Comparative 0.543 0.737 0.826
Gains
Self-Reflection
on Learning 0.512 0.715 0.802
Progress
total 0.545 0.824 0.849
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As shown in Table 2, the measurement indicators demonstrate adequate reliability and validity,
supporting the use of the constructs in the structural model.

Table 4
The Report of Correlation Analysis

Cognitive - Learning
Load Adaptivity Gains
Cognitive Load 0.756
Adaptivity 0.611** 0.801
Learning Gains 0.726** 0.578** 0.738

Correlation is significant at the 0.01 level (2 tailed).**

Table 4 presents the correlation coefficients between the constructs of Cognitive Load,
Adaptivity, and Learning Gains. The results show significant positive correlations between all
constructs. Cognitive Load and Adaptivity have a moderate correlation of 0.611, which is
statistically significant at the 0.01 level. Similarly, Cognitive Load and Learning Gains show a
strong positive correlation (r = 0.726), reflecting a substantial linear association between the
two measures. The correlation between Adaptivity and Learning Gains is moderate at 0.578,
suggesting that perceived adaptivity is also positively related to learning gains. The
interpretations of correlation strengths follow the guidelines suggested by Cohen (1988) and
Schober et al. (2018).

Although detailed statistical results are presented in Tables 1-7, the primary findings of
the study are summarized visually in the simplified SEM diagrams (Models 1 & 2). These
figures highlight the significant structural relationships among the main constructs and provide
an intuitive overview of the model results, while the tables are retained to ensure transparency
and statistical completeness.

Figure 1
The Schematic Depiction of Path Coefficient Values (Model 1)

Intrinsic Load +0.807
Extraneous Load «0.877
Germane Load “«0.712

0.907—+ Cognitive Learning Gail
Overall Perceived Cognitive Load +0.690 ognitive Learning Gains

Cognitive 0.794

Load 0.856* Affective Learning Gains

0.806—* Skill-Based Learning Gains
T 0.759— Higher-Order Learning Gains

0.646—+ Comparative Gains.
Learning Gains

Learner Perception of Adaptivity 4—0.750
0.774— Self-Reflection on Learning Progress
System Personalization +0.721
Feedback Effectiveness +0.851

Engagement with Adaptive Learning ¢ 0.864 Adaptivity

Figure 2
T-values for Path Coefficient Significance (Model 1)
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Intrinsic Load ©2.466
Extraneous Load Q4374
Germane Load ©s672

46421 Coanitive Learning Gai
Overall Perceived Cognitive Load ~ 49.890 ognitive Learning Gains

Cogpnitive 21.485

Load 31.187+ Affective Learning Gains

26.367—* Skill-Based Learning Gains
T 25.827— Higher-Order Learning Gains.

15438 Comparative Gains

Learner Perception of Adaptivity +16.909 3.466 Learning Gains
26.569— Self-Reflection on Learning Progress
System Personalization +25.805
Feedback Effectiveness 420.155

Engagement with Adaptive Learning ~ €7.072 Adaptivity

Table 6
The Fit Indices of the First Model

R2 Q2

Learning Gains 0.481 0.192
GOF=v0.624 * 0.481 =0.548

Model Fit Indicators: R?, Q?, and GOF for Learning Gains Table 6 provides key model fit
indicators for Learning Gains, including R?, Q2 and the Goodness of Fit (GOF). The R? value
for Learning Gains is 0.481, indicating that approximately 48.1% of the variance in learning
gains is explained by the model. The Q? value of 0.192 suggests a moderate predictive relevance
for the model. The GOF is calculated as 0.548, using the formula 1/0.624 * 0.481, reflecting
an acceptable overall model fit. This combination of R?, Q2 and GOF values supports the
robustness of the model in explaining and predicting learning gains.

Table 5
Path Analysis Results
Paths Path T Statistics Test Results
Coefficient
Cognitive Load — Learning Gains 0.794 21.485 Supported
Adaptivity — Learning Gains 0.581 13.466 Supported
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Table 5 presents the results of the path analysis for Cognitive Load and Adaptivity predicting
Learning Gains. The path coefficient from Cognitive Load to Learning Gains is 0.794 with a
T-statistic of 21.485, indicating a strong and statistically significant positive relationship, which
is supported. Similarly, the path coefficient from Adaptivity to Learning Gains is 0.581 with a
T-statistic of 13.466, also showing a positive and significant relationship, which is likewise
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supported. These results suggest that both cognitive load and adaptivity positively influence
learning gains, confirming the model’s relevance.

Figure 3
The Schematic Depiction of Path Coefficient Values (Model 2)
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Figure 4
T-values for Path Coelfficient Significance (Model 2)
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Table 6
The Fit Indices of the Second Model
RZ QZ
Cognitive Learning Gains 0.571 0.289
Affective Learning Gains 0.520 0.221
Skill-Based Learning Gains 0.494 0.208
Higher-Order Learning Gains 0.457 0.185
Comparative Gains 0.382 0.176
Self-Reflection on Learning Progress 0.535 0.243

GOF=v0.564 * 0.493 =0.527
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Table 6 provides the R?, Q% and Goodness of Fit (GOF) values for the sub-dimensions of
Learning Gains, including Cognitive Learning Gains, Affective Learning Gains, Skill-Based
Learning Gains, Higher-Order Learning Gains, Comparative Gains, and Self-Reflection on
Learning Progress. The R? values for these sub-dimensions range from 0.382 to 0.571,
indicating varying levels of variance explained by the model. Specifically, Cognitive Learning
Gains has the highest R? value of 0.571, suggesting that the model explains 57.1% of the
variance in cognitive learning gains, while Comparative Gains has the lowest R? at 0.382. The
Q? values, which measure predictive relevance, range from 0.176 to 0.289, with Cognitive
Learning Gains showing the highest value of 0.289, indicating the model has moderate
predictive relevance across these sub-dimensions. The overall GOF for the model, calculated
as V0.564 * 0.493, equals 0.527, suggesting an acceptable overall model fit. This combination
of R%, Q2 and GOF values supports the validity and predictive relevance of the model in
explaining the different dimensions of learning gains.

Table 7
Path Analysis Results
Paths Path T Statistics Test results
Coefficient
Cognitive . . .
Load — Cognitive Learning Gains 0.866 30.243 Supported
Szfgmve - Affective Learning Gains 0.844 29.911 Supported
Cogniti
LZS;‘ ve = Skill-Based Learning Gains 0.746 22367 Supported
Cogniti . . .
L(()):ilin ve — Higher-Order Learning Gains 0.816 28.315 Supported
Cognitive . .
Load — Comparative Gains 0.725 20.923 Supported
Cognitive N Self-Reflection  on  Learning 0.798 25.085 Supported
Load Progress
Adapt]v]ty N COgl’litiVC Leaming Gains 0.651 14.100 Supported
Adaptivity - Affective Learning Gains 0.585 13.169 Supported
Adaptivity - Skill-Based Learning Gains 0.533 11.505 Supported
Adaptivity N Higher-Order Learning Gains 0.509 10.231 Supported
Adaptivity — Comparative Gains 0.478 8.171 Supported
1f-Reflecti Learni
Adaptivity — Self-Reflection  on carning 0.668 15.898 Supported

Progress

For Cognitive Load, all paths to the sub-dimensions of learning gains are significant and
supported. The path coefficient from Cognitive Load to Cognitive Learning Gains is 0.866 (T-
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statistic = 30.243), indicating a very strong positive relationship. Similarly, the paths from
Cognitive Load to Affective Learning Gains (0.844, T = 29.911), Skill-Based Learning Gains
(0.746, T = 22.367), Higher-Order Learning Gains (0.816, T = 28.315), Comparative Gains
(0.725, T = 20.923), and Self-Reflection on Learning Progress (0.798, T = 25.085) are all
statistically significant, demonstrating that Cognitive Load positively influences all sub-
dimensions of learning gains. For Adaptivity, all paths to the learning gains sub-dimensions are
also significant and supported. The path from Adaptivity to Cognitive Learning Gains is 0.651
(T = 14.100), while the path to Affective Learning Gains is 0.585 (T = 13.169), indicating
moderate positive relationships. The path coefficients for Adaptivity to Skill-Based Learning
Gains (0.533, T =11.505), Higher-Order Learning Gains (0.509, T =10.231), and Comparative
Gains (0.478, T = 8.171) are smaller but still significant, suggesting moderate positive
influences. The strongest path for Adaptivity is to Self-Reflection on Learning Progress (0.668,
T = 15.898), indicating a strong relationship.

Discussion

This research examined the relationships between cognitive load, adaptivity, and learning
outcomes in Al-personalized learning environments incorporating AR for lower-intermediate
EFL learners. The results indicated that cognitive load had a greater impact than adaptivity on
learning outcomes. Adaptivity, although impactful, had a somewhat less influence on the same
outcomes. More precisely, the study's results indicate a substantial association between
cognitive load and learning gains, consistent with the predictions of Cognitive Load Theory
(Sweller, 2011). This idea posits that when learners' cognitive resources are overwhelmed, their
ability to absorb information efficiently diminishes, leading to reduced learning results. The
findings also support previous studies on the role of cognitive load in interactive and multimedia
learning settings. For example, Liu et al. (2021) revealed that increased cognitive load from
intricate multimedia presentations in AR environments resulted in diminished recall and lower
learning performance. Similarly, Candido and Cattaneo (2025) found that extraneous cognitive
load in multimedia learning can hinder knowledge acquisition. Moreover, Sweller et al. (2011)
also emphasized that excessive cognitive burden from poorly designed instructional materials
negatively affects learning outcomes. These findings underscore that unnecessary cognitive
load, whether from inadequately designed educational materials or suboptimal teaching
methods, might hinder the learning process.

The results emphasize that the inherent complexity of the learning material significantly
influences learning outcomes, a finding consistent with Cognitive Load Theory, which posits
that high element interactivity and intrinsic cognitive load can constrain learning when
instructional materials exceed learners’ processing capacity (Sweller, 1988; Sweller et al.,
2011). This finding corresponds with recent research by Jamil et al. (2023), which showed that
instructional materials aligned with learners’ existing cognitive abilities enhance engagement
and lead to greater cognitive learning gains. The research indicates that when activities are
suitably hard and align with the learner's zone of proximal development (Vygotsky, 1978), they
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may optimize relevant load, hence fostering profound cognitive processing. This sort of load
facilitates the development of new schemas and eventually boosts learning. The study's results
indicate a substantial adverse effect of total perceived cognitive load on learning outcomes.
When learners see their tasks as cognitively burdensome, it may result in irritation, anxiety, or
disengagement, which, as shown by Alvandi et al. (2025), may impede self-regulated learning
and emotional learning outcomes. The negative correlation between perceived cognitive load
and learning gains observed in the present study (see Table 4) is consistent with Skulmowski
and Xu (2022), who argued that elevated extraneous cognitive load in digital and online
learning environments can reduce learners’ motivation to engage in learning activities, thereby
negatively affecting academic outcomes. In Al-driven AR learning settings, relevant load was
seen to favorably affect skill acquisition outcomes. Germane load refers to the cognitive
resources that learners allocate to comprehend and organize incoming knowledge. The positive
relationship between adaptivity and learning gains identified in the present study (see Figures
3 & 4) corroborates the findings of Huang and Mok (2025)., who reported that learning systems
that effectively promote active engagement and problem-solving support learners in achieving
higher levels of skill-based learning and advanced cognitive abilities.

When comparing the structural path coefficients in the present study, cognitive load
exhibited a stronger association with learning outcomes than adaptivity. Nevertheless,
adaptivity still demonstrated a meaningful relationship with learning outcomes, with
engagement in adaptive learning and feedback effectiveness emerging as the most influential
subfactors of adaptivity (see Table 4 / Figures 3 & 4). The present findings are conceptually
consistent with prior experimental research by Mejeh et al. (2024) as well as Teng and Huang
(2025), which demonstrated that individualized learning environments providing timely and
accurate feedback are associated with improved cognitive and emotional learning gains.
Although these studies employed experimental designs and focused on learning gains rather
than adaptivity, their results support the broader notion that personalized and responsive
learning features—closely related to perceived adaptivity—are beneficial for learner outcomes.
Furthermore, learners’ perceptions of adaptivity play a critical role in shaping higher-order
learning outcomes, as Faber et al. (2024) demonstrated that learning environments perceived as
adaptable—particularly those tailored to learners’ specific needs—significantly enhance
engagement and self-reflection on learning progress. Learners who recognize that the system
customizes the learning experience to their individual needs are more likely to be intrinsically
motivated to tackle challenging tasks and reflect on their learning, thereby enhancing their
critical thinking and problem-solving abilities.

Nonetheless, involvement with adaptive learning, while positively associated with learning
gains, had a lesser impact relative to the other subfactors. This indicates that although learner
involvement is significant, it is not the only factor influencing learning gains. The quality and
efficacy of the adaptive characteristics are more crucial in determining results. Theodorio
(2024) contend that involvement is crucial, although it should be integrated with meticulously
crafted instructional methodologies and tailored interventions to achieve optimum learning
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results. Similarly, Jaboob et al. (2024) noted that adaptive systems fostering active engagement
via tailored learning pathways significantly enhance learning results compared to systems that
only modify information without addressing the learner's individual requirements and progress.

The examination of the impact of cognitive load and adaptivity on learning outcomes is
notably important inside Al-enhanced augmented reality settings. The discovery that cognitive
load significantly impacts learning outcomes more than adaptivity highlights the essential need
to create learning environments that reduce cognitive overload while effectively calibrating
difficulty to align with the learner's skill level. This outcome aligns with recent research by
Gandolfi and Ferdig (2025), which indicated that an adaptive learning environment, while
advantageous, cannot mitigate the effects of suboptimal task design that overwhelms the
learner's cognitive capability. In summary, the research offers significant insights into the
impact of cognitive load and adaptability on learning outcomes in AR settings for EFL learners.
While adaptivity does play a role in shaping learning outcomes, the findings indicate that
cognitive load is a more critical determinant of learner performance. Specifically, managing
cognitive load effectively can enhance learners’ engagement, facilitate skill acquisition, and
promote higher-order learning outcomes, such as problem-solving and application of language
skills in realistic contexts. These results underscore the importance of not only designing
adaptive learning environments but also carefully structuring instructional materials and
activities to align with learners’ cognitive capacities.

For English language pedagogy, these findings have several practical implications. First,
instructors and curriculum designers should consider integrating Al-powered AR tools that
dynamically adjust content difficulty, pacing, and modality based on individual learners’
cognitive load. Such tools can help ensure that learners are challenged sufficiently without
becoming overwhelmed, which is crucial for maintaining motivation and sustaining learning
over time. By monitoring and modulating cognitive load, teachers can create more effective
and personalized learning experiences that support vocabulary retention, grammar
comprehension, reading and listening fluency, and communicative competence in authentic
contexts. Moreover, adaptive AR systems can facilitate differentiated instruction by providing
tailored scaffolding for learners with varying proficiency levels. For example, novice learners
may receive additional guidance, simplified tasks, or multimodal cues, while more advanced
learners can engage in complex problem-solving activities or collaborative language practice.
This individualized approach not only enhances immediate learning outcomes but also fosters
long-term language development by promoting learner autonomy, self-regulation, and
sustained engagement. Ultimately, leveraging Al-powered AR technologies with careful
attention to cognitive load management offers a promising avenue for transforming EFL
instruction, enabling more efficient, effective, and learner-centered pedagogical practices.
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Conclusion

This research investigated the impact of cognitive load and adaptivity on learning outcomes in
Al-personalized learning environments that incorporate augmented reality (AR) for lower-
intermediate EFL learners. A key finding of this study is that cognitive load exerts a greater
influence on learning gains than adaptivity, highlighting the central role of cognitive processing
in Al-enhanced AR learning. Specifically, intrinsic load, germane load, and extraneous load
significantly influenced learners' cognitive and emotional outcomes, whereas total perceived
cognitive load negatively affected learning gains. Although adaptivity—including feedback
efficacy, system customization, and learner perceptions of adaptivity—also contributed to
learning outcomes, its effect was comparatively smaller than that of cognitive load.

The novelty of this study lies in its systematic examination of how different components
of cognitive load interact with adaptive features in Al-powered AR environments to influence
EFL learning outcomes. By disentangling the relative contributions of cognitive load and
adaptivity, the study provides new insights into the design principles of personalized learning
systems. Specifically, it demonstrates that reducing unnecessary cognitive load while ensuring
tasks are appropriately challenging can maximize engagement, skill acquisition, and overall
learning effectiveness. At the same time, adaptive features such as individualized feedback and
system responsiveness are needed to be carefully aligned with cognitive load management to
fully enhance their impact.

This study emphasizes that cognitive load should remain a central consideration in
instructional design, even in the context of emerging Al and AR technologies. According to the
results (Figures 3 and 4), learners achieve the greatest gains when they are neither overwhelmed
by irrelevant information nor under-stimulated by tasks that exceed their current cognitive
capacity. Thus, the most effective Al-powered AR learning systems are those that balance
cognitive load, provide timely feedback, and deliver individualized experiences.

Finally, optimizing cognitive load in conjunction with adaptive learning strategies can
substantially enhance the educational experience, offering educators and instructional designers
practical guidance for developing Al- and AR-based learning tools. Future research should
continue to explore the dynamic interactions between cognitive load and adaptivity, particularly
their effects on long-term learning and the moderating role of individual learner differences.
Overall, by providing actionable insights for the development of future educational
technologies aimed at enhancing cognitive engagement, learning efficiency, and skill
development, this study makes a novel contribution to the growing field of personalized
learning in AR environments.

This research illustrates that cognitive load has a big effect on how much you learn in Al-
AR settings. How well EFL students understand and remember things is directly affected by
cognitive load, especially internal, external, and relevant load. The results show that improving
learning outcomes can be achieved by lowering brain load that isn't needed while still pushing
students in the right way. In line with Mayer's multimedia principles (2009), educational
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technologies should focus on reducing unnecessary load by making content and visual design
simpler. This will help students focus on important tasks without being interrupted. Adapting
the level of challenge to each learner's needs can also help keep the right amount of internal
load, which keeps students from getting too overwhelmed and keeps them interested. The study
also talked about how important it is for personalized learning methods to be able to change.
Cognitive load had a bigger effect on learning gains than adaptivity. However, individual
feedback, system personalization, and how learners saw adaptivity were all very important in
making them more engaged. As Hattie and Timperley point out, to get the most out of these
effects, Al systems should give individuals fast, personalized feedback that helps them figure
out their strengths and weaknesses. Al can also change learning paths based on how each person
is doing, making sure that students are always pushed without being too much. Giving students
chances to think about their progress and ways of learning can also help them become more
engaged and better able to control their own behavior. For Al-driven AR worlds to work, they
need to have flexible features and ways to handle brain load. AR settings should be made with
the user in mind, with material that is both engaging and not too hard to understand. Progressive
building in AR tasks, where the level of difficulty rises as students get better, makes sure that
they are properly pushed. Gamification features like keeping track of your progress and giving
prizes can also make people more interested, which can lead to higher-order learning gains and
drive. And finally, the results show that we need to do more study into how flexible AR learning
settings affect people in the long run. In the future, researchers should look into how differences
between people, like what they already know and how motivated they are, affect how cognitive
load, adaptability, and learning results interact with each other. Cross-cultural studies could also
help us understand how different types of students use flexible learning tools. This kind of study
can help improve the design of AR learning tools so that they work well for a wide range of
people and situations.

This work offers significant insights into the effects of cognitive load and adaptability on
learning outcomes in Al-personalized augmented reality settings. Nevertheless, there are a
number of constraints that should be taken into account, as they also indicate potential areas for
future research. This research used self-report measures, which may not consistently represent
learners' authentic cognitive experiences or their real learning results. To mitigate this
restriction, further research should include more objective measures of cognitive load, including
physiological markers (e.g., eye-tracking or heart rate variability) or performance-based
evaluations of learning. Furthermore, this study took place in English language institutions,
focusing on EFL learners. Future research could extend this study to include learners from
different disciplines to see if the findings hold across various academic domains. Additionally,
the study focused on a short-term timeframe, with data collected during a single semester. Long-
term retention and the transfer of skills to real-world contexts are critical aspects of effective
learning, and future studies could investigate these aspects by conducting longitudinal research.
Tracking learners’ progress over an extended period would offer insights into how Al and AR
environments influence long-term learning outcomes, such as the retention of language skills



Technology Assisted Language Education TALE

or the ability to apply knowledge in real-life scenarios. Finally, the study did not account for
individual learner characteristics, such as motivation, prior knowledge, or learning preferences,
which may play a significant role in how learners interact with Al-powered AR systems. Future
research may explore how individual differences, including learner motivation, self-regulated
learning skills, and prior knowledge, affect the experience of cognitive load and the
effectiveness of adaptive learning features.
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