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The implementation of Artificial Intelligence (AI) and Augmented Reality 

(AR) in educational settings has become an innovative approach for 

individualized learning, providing immersive and adaptable experiences 

for students. Understanding the effects of cognitive load and adaptivity on 

learning outcomes in AI-enhanced AR environments is essential for 

refining instructional strategies. This study investigated the relationships 

between cognitive load, adaptivity, and learning gains among 258 English 

as a Foreign Language (EFL) learners using SmartPLS. The results 

indicated that intrinsic cognitive load (β = 0.726, p < 0.001) and extraneous 

load (β = -0.432, p < 0.001) had significant effects on learning gains, 

whereas germane load showed a positive influence (β = 0.314, p < 0.01). 

Adaptivity also contributed significantly, with learners’ perceptions of 

adaptivity (β = 0.578, p < 0.001) and system personalization (β = 0.611, p 

< 0.001) emerging as the most influential subcomponents, though its 

overall impact was smaller than that of cognitive load. These findings 

emphasize the importance of managing cognitive load and integrating 

tailored adaptive features to maximize learning outcomes in AI-enhanced 

AR settings. Strategies that reduce extraneous load and enhance germane 

load can substantially improve learning experiences for lower-intermediate 

EFL learners. 
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Introduction 

The rapid growth of educational technology has created new potential to improve teaching and 

learning, with AI and AR leading these innovations (Bamanger, 2025; Tan et al., 2025). As 

education evolves, there is growing acknowledgment of the transformative potential of modern 

technologies in conventional learning contexts, with research highlighting how digital and 

intelligent technologies are reshaping educational practices, promoting new pedagogical 

designs, and enhancing engagement and learning outcomes across diverse settings (Çelik & 

Baturay, 2024). Personalized learning, which tailors educational experiences to the specific 

requirements and preferences of individual learners, has emerged as a primary emphasis in the 

quest for enhanced learning outcomes, with meta analytic evidence showing that technology 

enhanced personalized learning significantly improves cognitive and noncognitive skills and 

overall academic performance in higher education contexts (Tudor et al., 2025). AI-driven 

personalized learning has the potential to customize instructional material in accordance with 

the learner's existing knowledge, preferred learning method, and cognitive abilities 

(Halkiopoulos & Gkintoni, 2024). AI-driven personalized learning systems can create 

educational tools that are exceptionally effective, engage learners, and optimize their cognitive 

load, adaptability, and learning outcomes when integrated with AR, which enriches the learning 

experience through immersive, interactive, and spatially enhanced environments (Cinar et al., 

2024). 

Cognitive Load Theory asserts that excessive cognitive demands can impede learning by 

exceeding the limited capacity of working memory, making it difficult for learners to process, 

integrate, and transfer new information effectively (Sweller et al., 2019). Cognitive load theory 

asserts that high cognitive demands might impede learning by overloading learners' mental 

capacity (de Jong, 2010). Consequently, managing cognitive load is essential for promoting 

successful learning, based on Cognitive Load Theory, which posits that learning is hindered 

when instructional demands exceed the limited capacity of working memory. Cognitive 

overload occurs when learners are required to process more information than their cognitive 

resources allow, leading to reduced retention and impaired performance (Sweller et al., 2011; 

Evans et al., 2024).  In contrast to such fixed instructional demands that may induce overload, 

adaptivity in learning environments refers to the ability of educational systems to dynamically 

adjust instructional content, pacing, and support in response to learners’ ongoing performance, 

difficulties, and needs, thereby helping to optimize cognitive processing and learning outcomes 

(Demartini et al., 2024). Adaptive learning systems can maintain learners' engagement at an 

ideal difficulty level, reducing irritation while fostering profound involvement (Ezzaim et al., 

2023). Ultimately, learning gains signify the enhancements in knowledge, abilities, and 

competences derived from educational experiences (Evans et al., 2018). These improvements 

are often evaluated via assessments or performance assignments that gauge the learner's 

comprehension and application of the material (Ilie et al., 2024). The relationship among 

cognitive load, adaptability, and learning outcomes is essential, as research indicates that 
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adaptive learning approaches that dynamically adjust to individual learner needs can reduce 

unnecessary cognitive burden and contribute to more effective processing and improved 

educational results in technology-enhanced environments (Chernikova et al., 2025; Zhu et al., 

2025). 

The incorporation of AI and AR into personalized learning environments could potentially 

support improvements in educational outcomes. The immersive features of augmented reality 

may improve learning by offering interactive, contextually rich experiences that facilitate a 

deeper comprehension of abstract ideas and intricate information (Fidan & Tunce, 2019). 

Simultaneously, AI systems can evaluate data from learners’ interactions and adaptively modify 

instructional material to enhance learning experiences. Research on AI-driven adaptive learning 

technologies shows that machine learning algorithms analyze learner activity patterns and 

performance data to tailor content delivery, pacing, and feedback to individual needs (Gligorea 

et al., 2023). Nevertheless, empirical evidence on the synergistic effects of AI-driven 

personalized learning in augmented reality settings remains relatively limited, indicating a need 

for further investigation. Existing studies increasingly explore the integration of AI and 

augmented reality in educational contexts; yet, relatively few have examined how their 

combined use influences cognitive load, adaptivity, and learning outcomes within personalized 

learning environments (Liu et al., 2025; Gkintoni et al., 2025). 

Many studies have examined the influence of augmented reality on learning outcomes, 

demonstrating generally positive effects on comprehension and academic performance (e.g., 

Gandolfi & Ferdig, 2025; Li et al., 2021; Tobar-Muñoz et al., 2017). However, relatively few 

of these investigations have directly addressed the significance of cognitive load or the potential 

of adaptive features to alleviate overload in these contexts. Additional studies have examined 

AI’s capacity to personalize learning and its impact on cognitive load and academic 

achievement (Kaplan et al., 2021; Li et al., 2021); nevertheless, there is a deficiency of research 

that integrates AR’s immersive learning environment into this paradigm. Despite the increasing 

body of research examining AI and AR individually or in combination, relatively few studies 

have explicitly explored how their integration affects cognitive load, adaptivity, and learning 

outcomes within personalized learning environments (Farhood et al., 2025; Wang et al., 2025).  

Consequently, further research is warranted to investigate the potential benefits of 

combining AI and AR in learning settings, particularly regarding their potential to support 

cognitive processing, adaptive learning, and enhanced educational outcomes. This study seeks 

to explore the associations between AI-driven personalized learning in augmented reality 

environments and learners’ cognitive load, adaptability, and learning outcomes through SEM 

analysis. To this end, the following research questions are formulated: 

• What is the relationship between cognitive load and learning gains among EFL learners? 

• What is the relationship between adaptivity and learning gains among EFL learners? 
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Literature review 

AI-Personalized Learning in Education 

Educational technology research has increasingly prioritized the potential of AI to transform 

personalized learning environments by enabling adaptive, data driven instruction tailored to 

individual learners’ needs (Gligorea et al., 2023). The objective of personalized learning is to 

transcend conventional one-size-fits-all approaches by accommodating the distinctive 

strengths, interests, and requirements of individual learners (Shemshack & Spector, 2020). 

However, existing research often assumes that personalization automatically leads to improved 

learning outcomes without sufficiently interrogating the pedagogical conditions under which 

such benefits emerge. AI facilitates this customization by evaluating learner data (e.g., test 

scores, interaction patterns) and offering feedback or modifying the learning trajectory (Das et 

al., 2023); however, the effectiveness of these mechanisms depends heavily on the validity of 

the data sources and the interpretability of algorithmic decisions. 

Recent studies suggest that AI has the potential to enhance student engagement and 

learning outcomes, although findings vary across contexts (Heydarnejad, 2025a; Heydarnejad, 

2025b; Jaboob et al., 2024). This variability indicates that AI-driven personalization is not 

universally effective and may amplify existing instructional inequalities if contextual factors 

are overlooked. In contrast to non-adaptive learning environments, Tan et al. (2025) illustrated 

that AI-powered systems that dynamically adapt content delivery based on individual 

requirements and analyze learners’ progress achieved superior performance on assessments. 

Nevertheless, such performance gains are often measured through short-term outcomes, leaving 

questions about long-term learning transfer and sustainability insufficiently addressed. 

Additionally, the capacity of AI to offer immediate feedback is frequently cited as essential 

for promoting learner autonomy and supporting formative assessment practices (Ba et al., 

2025). Yet, over-reliance on automated feedback may risk reducing opportunities for reflective 

learning and meaningful human–teacher interaction. The integration of AI into learning systems 

is further beset by obstacles, including implementation complexity, ethical concerns, and 

algorithmic bias. Accordingly, Gerlich (2025) emphasizes that effective AI application requires 

a nuanced understanding of deployment contexts, as the educational impact of AI-driven 

systems is highly context dependent. This underscores the need for future research to move 

beyond technological affordances and critically examine how instructional design, data 

governance, and contextual alignment shape AI’s educational value. To maximize effectiveness, 

the quality and quantity of data, as well as the design of underlying algorithms, must be 

carefully aligned with clearly defined learning objectives. 

Augmented Reality (AR) in Education 

Unique opportunities for personalized learning are provided by AR, which overlays digital 

content on the real world, resulting in interactive, immersive, and context-rich learning 

environments (Bacca-Acosta et al., 2022). While AR is frequently portrayed as inherently 
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engaging, this assumption often overlooks how instructional design mediates the relationship 

between immersion and meaningful learning. AR promotes direct engagement with content, 

which can enhance learners’ comprehension of intricate concepts and spatial awareness (Al-

Ansi et al., 2023); however, empirical evidence suggests that these benefits are uneven and 

highly sensitive to task complexity and learner characteristics. 

The efficacy of AR in educational contexts has been supported by recent studies. Hwang 

and Chien (2022) demonstrated that AR use in science education enhances learning experiences 

by enabling visualization of abstract concepts. Despite these promising findings, much of the 

existing research relies on controlled experimental settings, raising questions about scalability 

and transferability to authentic classroom environments. Beyond cognitive benefits, AR has 

been shown to increase student motivation and foster a sense of agency through interactive 

simulations (Gandolfi & Ferdig, 2025). Yet, motivation gains do not consistently translate into 

sustained learning improvements unless they are accompanied by structured pedagogical 

guidance. Similarly, AR’s capacity to create context-rich environments supports experiential 

learning and real-world problem-solving (Alkhabra et al., 2023); nevertheless, poorly aligned 

contextual elements may distract learners and dilute instructional focus. 

Despite its considerable potential, several challenges constrain the effective 

implementation of AR. One major obstacle is the requirement for technological infrastructure 

capable of supporting AI-driven personalized AR applications, including appropriate devices 

and software (Arena et al., 2022). When such infrastructure is inadequate, AR environments 

may increase extraneous cognitive load and limit system adaptivity, thereby constraining 

learning gains in AR-based EFL contexts. Furthermore, the success of AR experiences is 

contingent upon pedagogically sound designs that are meaningfully integrated into the 

curriculum (Chang, 2021). This highlights a persistent gap in the literature between 

technological innovation and instructional coherence, suggesting that future research should 

critically examine not only what AR can do, but under what conditions it meaningfully supports 

learning. 

Cognitive Load and Personalized Learning 

Cognitive Load Theory, proposed by Sweller (1988), posits that the human brain has a limited 

capacity for information processing, implying that instructional design must regulate cognitive 

demands to improve learning efficacy. While this principle is well established, its application 

in personalized learning environments remains theoretically underexplored and empirically 

inconsistent. In tailored learning settings, managing cognitive load is particularly critical, as 

learners may experience overload when confronted with material that exceeds their cognitive 

capacity, resulting in diminished engagement and retention (Zhu et al., 2024). Personalization 

alone does not guarantee optimal cognitive load management and may, in some cases, 

exacerbate cognitive demands if adaptations are poorly calibrated. 

Recent research has examined how AI-driven tailored learning systems may alleviate 

cognitive stress. For instance, Gkintoni et al. (2025) investigated the role of AI in regulating 
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cognitive load by adaptively modifying material complexity and learning tempo according to 

learners’ performance. Their findings suggest that adaptive systems can reduce cognitive 

overload and enhance learners’ ability to focus on germane learning activities. However, studies 

in this area often prioritize performance-based outcomes over direct measures of cognitive 

processing, thereby limiting insight into how learners internally allocate cognitive resources. 

Consequently, the mechanisms through which AI adaptations support deeper learning remain 

insufficiently specified. 

Similarly, AR-based interventions provide illustrative examples of how technological 

affordances may both support and challenge cognitive load regulation. For example, AR has 

been shown to reduce extraneous cognitive load by incorporating visual and interactive 

elements that clarify complex material, thereby facilitating information processing 

(Gonnermann-Müller & Krüger, 2024). Yet, the multimodal richness of AR environments can 

simultaneously introduce additional sources of cognitive demand, particularly when learners 

must coordinate multiple streams of information. Accordingly, while adaptive systems and AR 

may assist in regulating cognitive load, they must be carefully designed to avoid increasing 

intrinsic cognitive load, which is inherent to the complexity of the learning content. For 

instance, Kim et al. (2024) demonstrated that although AR systems provide visual cues and 

interactive simulations, they may overwhelm learners when task complexity exceeds their 

cognitive capabilities. These findings underscore the need for a more nuanced balance between 

personalization, content complexity, and learner readiness when integrating AI and AR into 

instructional design. 

Adaptivity and Learning in AI-AR Environments 

Adaptivity is a key component of personalized learning environments, as systems are designed 

to continuously adjust to learners’ evolving needs. Recent advancements in AI and AR 

technologies have enabled increasingly adaptive learning experiences (Ouyang et al., 2022; 

Ouyang & Jiao, 2021). However, the presence of adaptivity alone does not guarantee 

instructional effectiveness, as its impact depends on how learner data are interpreted and 

translated into pedagogically meaningful adjustments. AI-driven personalized systems utilize 

data from student interactions to assess progress and modify learning content and difficulty in 

real time (Kabudi et al., 2021), yet such data-driven adaptations may oversimplify learning 

processes if they rely primarily on observable behaviors rather than deeper cognitive indicators. 

Previous studies examining adaptivity in AI–AR environments suggest potential benefits 

for learner engagement and achievement. For example, Ironsi (2023) investigated an AI-

powered AR system in an academic context and reported that adaptive learning environments 

supported learners’ engagement with complex concepts by dynamically adjusting instructional 

content based on individual progress. The study further indicated that adaptivity can promote 

deep learning by maintaining an appropriate level of challenge without overwhelming learners. 

Nevertheless, these conclusions are largely drawn from short-term engagement and 
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performance measures, leaving open questions about the durability and transferability of such 

learning gains. 

Similarly, research on AI-powered adaptive systems provides illustrative evidence of 

motivational benefits. Eltahir and Babiker (2024) found that adaptive systems adjusting content 

based on learner data were associated with higher motivation and performance than static 

learning environments. While these findings are promising, they also raise concerns about the 

extent to which adaptive mechanisms can accommodate diverse learning strategies and avoid 

reinforcing narrow learning pathways. Taken together, the literature suggests that adaptivity is 

most effective when embedded within well-aligned instructional designs that balance 

responsiveness, cognitive challenge, and learner autonomy, rather than functioning as a purely 

technical feature of AI–AR systems. 

Learning Gains in AI-AR Environments 

Learning gains denote the quantifiable improvements in knowledge and skills following an 

educational intervention (Jaboob et al., 2024). AI- and AR-based personalized learning systems 

have been widely reported to influence learning outcomes by enhancing instructional 

experiences and affording learners greater autonomy over their learning trajectories (Poupard 

et al., 2024). However, reported learning gains vary considerably depending on instructional 

context, assessment design, and the extent to which personalization is pedagogically aligned 

with learning objectives. For example, İslim et al. (2024) demonstrated that augmented reality 

environments can improve learning outcomes in disciplines such as physics and mathematics 

by enabling learners to interact with visual models that support conceptual understanding. 

These findings underscore the potential benefits of visual interactivity, yet they also indicate 

the need for caution regarding the generalizability of such gains beyond domain-specific tasks 

or short-term assessments. Similarly, Holmes et al. (2019), in their review of AI in education 

research, reported that AI-driven personalized learning systems were associated with 

improvements in test scores and retention rates, particularly when systems dynamically adapted 

to learners’ progress. Nevertheless, the review also suggests that many studies rely on 

standardized outcome measures, which may not fully capture higher-order learning or long-

term knowledge transfer. 

Moreover, the integration of AR with AI-driven personalization is often assumed to amplify 

learning gains through increased immersion and engagement, yet empirical evidence remains 

context dependent. For instance, Lin and Chen (2024) found that AI-driven AR systems 

improved students’ performance in problem-solving tasks by providing adaptive learning 

environments tailored to individual needs. Despite these promising findings, it remains unclear 

how such systems scale across diverse learner populations and whether increased immersion 

consistently translates into durable learning improvements. Taken together, the literature 

indicates that learning gains associated with AI- and AR-based personalization are contingent 

upon careful instructional design, meaningful assessment strategies, and alignment between 

technological affordances and cognitive learning processes.  



 

 

 

 

         Volume 3. Issue 4. 2025. Pages 82 to 110. 

 
Technology Assisted Language Education TALE 

88 

Method 

Participants 

The participants consisted of 258 EFL learners enrolled in lower-intermediate English courses 

at multiple private language institutes in Iran. The learners were aged between 15 and 18 years, 

including 116 females and 142 males. Initially, 287 learners were invited to participate in the 

study; however, 29 incomplete or invalid responses were excluded during data cleaning, 

resulting in a final sample of 258 valid cases. Participants were recruited from language 

institutes located in Khorasan Razavi, Isfahan, Tehran, and Shiraz provinces, where they were 

actively studying English as a foreign language. Prior to inclusion in the final sample, all 

participants completed a brief screening questionnaire designed to assess their prior experience 

with AI-supported learning tools and their access to AR-compatible devices (e.g., smartphones 

or tablets). Only learners who reported prior exposure to AI- and AR-based educational 

applications and confirmed regular access to AR-enabled devices were included in the study. 

This screening ensured that all participants possessed the minimum technological familiarity 

required to meaningfully engage with the AI-enhanced AR learning environment examined in 

this research. 

Instrumentation 

The study employed an online questionnaire as the primary instrument for data collection. Prior 

to administering the main scales, a screening section was included to ensure that remote 

participants possessed adequate prior knowledge and experience with AI- and AR-based 

learning environments. This screening assessed participants’ prior exposure to AI and AR 

technologies, frequency of use, and self-reported competence in educational contexts. 

Participants who did not meet the minimum experience criteria were excluded from the study. 

Following the screening section, the questionnaire comprised three validated instruments 

adapted for the context of AI-enhanced AR learning environments. Sample questions for each 

instrument were included in the questionnaire to illustrate the constructs being measured. 

Cognitive Load 

Cognitive load was measured using a modified version of the Cognitive Load Scale developed 

by Leppink et al. (2013). The scale assesses four dimensions: Intrinsic Load (5 items), 

Extraneous Load (5 items), Germane Load (5 items), and Overall Perceived Cognitive Load 

(10 items). All items were rated on a seven-point Likert scale. Minor wording modifications 

were made to align the items with AI-AR learning tasks while preserving the original construct 

definitions. The internal consistency of the scale in the present study was acceptable (α = 0.877). 

Sample questions included: “The learning tasks in the AI-enhanced AR environment were very 

complex.” (Intrinsic Load), “The way information was presented in the AI-AR system was 

unclear or confusing.” (Extraneous Load), “The AI-AR activities helped me to better 
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understand the learning material.” (Germane Load), and “Overall, using the AI-AR system 

required a high level of mental effort.” (Overall Cognitive Load). 

Adaptivity 

Adaptivity was assessed using an adapted instrument grounded in the adaptive learning systems 

framework proposed by Dominic et al. (2015). This framework conceptualizes adaptivity as a 

system’s ability to dynamically personalize content, feedback, and learning pathways based on 

learner performance and preferences. The instrument was tailored to reflect AI-driven real-time 

personalization in AR learning environments. The scale consisted of four subscales: Learner 

Perception of Adaptivity (5 items), System Personalization (5 items), Feedback Effectiveness (5 

items), and Engagement with Adaptive Learning (5 items), measured on a five-point Likert scale. 

The internal consistency of the scale was acceptable (α = 0.842). Sample questions included: “The 

AI-AR system adapted the learning content to match my learning needs.” (Learner Perception of 

Adaptivity), “The system personalized activities based on my previous performance.” (System 

Personalization), “The feedback provided by the AI system helped me improve my learning.” 

(Feedback Effectiveness), and “I felt more engaged because the learning system adjusted to my 

progress.” (Engagement with Adaptive Learning). 

Learning Gains 

Learning gains were assessed using a self-report Learning Gains Questionnaire (LGQ) designed 

to measure learners’ perceived improvements across multiple learning domains. The instrument 

was adapted from established self-reported learning gains frameworks commonly used in 

educational research and aligned with the instructional objectives of the AI-AR learning 

environment. The LGQ comprised 30 items organized into six subscales: Cognitive Learning 

Gains (5 items), Affective Learning Gains (5 items), Skill-Based Learning Gains (5 items), 

Higher-Order Learning Gains (5 items), Comparative Gains (5 items), and Self-Reflection on 

Learning Progress (5 items). All items were rated on a five-point Likert scale, ranging from 1 

(strongly disagree) to 5 (strongly agree), with higher scores indicating greater perceived 

learning gains. Sample items included “I gained a better understanding of the course content 

through the AI-AR activities” (Cognitive Learning Gains), “The AI-AR learning experience 

increased my interest in learning English” (Affective Learning Gains), and “I improved my 

ability to apply what I learned in practical tasks” (Skill-Based Learning Gains). Additional 

items addressed higher-order thinking, comparative learning experiences, and reflection on 

progress. The internal consistency of the LGQ in the current study was acceptable, with a 

Cronbach’s alpha coefficient of 0.867, indicating satisfactory reliability. 

Evidence for validity was established through multiple procedures. First, content validity 

was supported through expert review, whereby specialists in educational technology and 

language learning evaluated the items for clarity, relevance, and alignment with the study 

objectives. Minor revisions were made based on their feedback to improve item wording and 

domain coverage. Second, construct validity was examined using factor-analytic procedures, 
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which confirmed that the items loaded appropriately onto their intended subscales and reflected 

the proposed multidimensional structure of learning gains. Finally, face validity was established 

through pilot testing with a small group of learners, who reported that the questionnaire items 

were understandable and representative of their learning experiences in the AI-AR 

environment. Together, these results indicate that the LGQ demonstrates adequate validity and 

reliability for assessing learners’ perceived learning gains in the context of AI-AR–supported 

instruction. 

Data Collection 

An online survey was administered to all participants who passed the screening questionnaire 

during the Fall semester of 2024. This method allowed the study to reach a diverse group of 

learners, enabling them to complete the survey remotely at their convenience. All participants 

provided informed permission and were told that their participation was entirely voluntary, with 

the ability to withdraw at any moment without consequence. The participants were further 

informed of the anonymity of their replies, and all data was anonymized prior to processing. 

The questionnaire assessed cognitive load, adaptivity, and learning gains in AI-driven AR 

learning environments using validated and context-adapted scales. Sample items were included 

to illustrate how each construct was operationalized. Participants were apprised of the study's 

objective, the voluntary nature of their participation, and the confidentiality of their responses 

prior to completion of the online survey. In order to guarantee data integrity, only questionnaires 

that were fully completed were retained for subsequent statistical analysis. Incomplete 

responses were excluded from the analysis. 

Data Analysis 

The data gathered from participants was examined via Partial Least Squares Structural Equation 

Modeling (PLS-SEM), with the SMART PLS program applied for statistical analysis. PLS-

SEM was used due to its appropriateness for examining intricate interactions across variables 

with very limited sample sizes or on the case of deviation from normality (Hair et al., 2017). 

The analysis adhered to a bifurcated methodology: 

1. Measurement Model: The validity and reliability of the measurement model were 

evaluated by the assessment of item outer loadings, composite reliability, and average variance 

extracted (AVE) values. Furthermore, discriminant validity was assessed with the Fornell-

Larcker criteria and the HTMT ratio. 

2. Structural Model: The structural model was assessed by analyzing the path coefficients 

and R² values. Bootstrapping was used to assess the statistical significance of the path 

coefficients. Effect sizes (f²) were computed to evaluate the strength of the connections between 

the variables. 
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Findings 

This section presents the study’s findings on the effects of cognitive load and adaptivity on 

learning outcomes in AR environments for EFL learners. Data were analyzed using PLS-SEM 

via SmartPLS, which allowed for the assessment of relationships among latent constructs and 

their respective sub-dimensions. The Kolmogorov–Smirnov (K-S) test results for normality are 

summarized in Table 1. In the following, key structural relationships are illustrated in Model 1 

and Model 2, which provide visual summaries of the significant paths between constructs and 

their contributions to overall and sub-dimension learning gains. 

Table 1 

Results of the Kolmogorov-Smirnov (K-S) Test for Normality 

  Kolmogorov-Smirnov Z Asymp. Sig. (2-tailed) 

Intrinsic Load   0.182 0.000 

Extraneous Load  0.138 0.000 

Germane Load 0.169 0.000 

Overall Perceived Cognitive Load  0.127 0.000 

Cognitive Load 0.107 0.000 

Learner Perception of Adaptivity   0.104 0.000 

System Personalization   0.079 0.000 

Feedback Effectiveness  0.120 0.000 

Engagement with Adaptive Learning 0.111 0.000 

Adaptivity 0.146 0.000 

Cognitive Learning Gains  0.109 0.000 

Affective Learning Gains  0.068 0.005 

Skill-Based Learning Gains  0.144 0.000 

Higher-Order Learning Gains  0.136 0.000 

Comparative Gains  0.133 0.000 

Self-Reflection on Learning Progress  0.119 0.000 

Learning Gains 0.066 0.009 

 

The K-S test indicated that most measures in this study deviate from a normal distribution, with 

the majority of Asymp. Sig. values being 0.000. While this suggests that the data are not suitable 

for parametric tests that assume normality, the use of PLS-SEM via SmartPLS is appropriate, 

as it is robust to violations of normality and can handle non-normally distributed data for 

analyzing relationships among latent constructs. 

The following table presents the original sample loadings and T-statistics for various constructs, 

including cognitive load, learner perceptions, system personalization, feedback effectiveness, 

engagement with adaptive learning, and learning gains. These measures provide valuable 
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insights into the significance and contribution of each question item to its corresponding 

construct. 

              Table 2 

              Analysis of Question Loadings and T-Statistics 

  Questions Original Sample T -Statistics 

Cognitive 

Load 

Intrinsic Load 

C1 0.708 17.328 

C2 0.710 15.258 

C3 0.736 19.522 

C4 0.764 25.766 

C5 0.857 26.164 

Extraneous 

Load 

C6 0.767 28.466 

C7 0.730 19.291 

C8 0.703 18.166 

C9 0.716 16.141 

C10 0.624 12.433 

Germane Load 

C11 0.779 30.038 

C12 0.743 17.747 

C13 0.848 29.559 

C14 0.680 16.210 

C15 0.673 18.196 

Overall 

Perceived 

Cognitive Load 

C16 0.722 18.587 

C17 0.888 35.388 

C18 0.896 37.307 

C19 0.749 19.878 

C20 0.768 21.389 

C21 0.816 27.280 

C22 0.847 46.124 

C23 0.769 20.203 

C24 0.825 31.436 

C25 0.673 14.630 

Adaptivity 

Learner 

Perception of 

Adaptivity 

A1 0.780 20.269 

A2 0.841 41.024 

A3 0.787 26.409 

A4 0.853 40.372 

A5 0.866 57.657 

System 

Personalization 

A6 0.823 31.219 

A7 0.833 33.217 

A8 0.850 31.240 

A9 0.862 35.217 

A10 0.786 24.231 

Feedback 

Effectiveness 

A11 0.836 40.231 

A12 0.727 22.777 

A13 0.838 42.311 



Technology Assisted Language Education TALE 

 

 

 

 

 

93 

 

          Volume 3. Issue 4. 2025. Pages 82 to 110. 

 
A14 0.846 38.317 

A15 0.858 36.367 

Engagement 

with Adaptive 

Learning 

A16 0.737 25.204 

A17 0.800 32.078 

A18 0.559 15.976 

A19 0.641 18.819 

A20 0.865 44.316 

Learning 

Gains 

Cognitive 

Learning Gains  

L1 0.689 13.086 

L2 0.724 16.524 

L3 0.823 37.250 

L4 0.754 28.622 

L5 0.614 19.544 

Affective 

Learning Gains  

L6 0.824 31.002 

L7 0.810 33.875 

L8 0.874 39.852 

L9 0.767 21.640 

L10 0.770 29.697 

Skill-Based 

Learning Gains  

L11 0.742 26.644 

L12 0.642 15.898 

L13 0.684 17.491 

L14 0.697 18.610 

L15 0.812 39.425 

Higher-Order 

Learning Gains  

L16 0.585 9.854 

L17 0.646 10.420 

L18 0.752 19.555 

L19 0.797 26.626 

L20 0.796 40.697 

Comparative 

Gains   

L21 0.751 28.981 

L22 0.651 14.333 

L23 0.808 32.030 

L24 0.779 29.075 

L25 0.683 14.138 

Self-Reflection 

on Learning 

Progress   

L26 0.641 13.839 

L27 0.716 18.077 

L28 0.892 36.723 

L29 0.672 15.025 

L30 0.621 14.835 

   

All measurement items demonstrated statistically significant loadings and provided strong 

support for their respective constructs (Table 2). The Cognitive Load dimensions—including 

intrinsic, extraneous, germane, and overall perceived cognitive load—exhibited generally high 

factor loadings and substantial T-statistics, indicating that the items reliably captured different 

aspects of learners’ cognitive processing. Similarly, the Adaptivity construct, encompassing 

learner perception of adaptivity, system personalization, feedback effectiveness, and 
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engagement with adaptive learning, showed robust indicator loadings, confirming the reliability 

of these measures in representing adaptive learning features. The Learning Gains construct and 

its sub-dimensions (cognitive, affective, skill-based, higher-order, comparative gains, and self-

reflection on learning progress) also demonstrated acceptable to strong loadings across 

indicators, with particularly strong contributions observed for affective learning gains and 

higher-order learning outcomes. Overall, these results confirm that the measurement model is 

well supported, providing a reliable foundation for subsequent structural model analysis. 

       Table 3 

       Reliability and Validity Reports 

Constructs Average Variance 

Extracted (AVE) 

Cronbach's 

Alpha 

Composite 

Reliability 

Cognitive Load 

Intrinsic Load 0.573 0.786 0.857 

Extraneous Load 0.503 0.883 0.915 

Germane Load 0.559 0.890 0.918 

Overall Perceived 

Cognitive Load 
0.653 0.812 0.855 

total 0.572 0.806 0.778 

Adaptivity 

Learner 

Perception of 

Adaptivity 

0.622 0.705 0.811 

System 

Personalization 
0.683 0.728 0.820 

Feedback 

Effectiveness 
0.691 0.720 0.817 

Engagement with 

Adaptive 

Learning 

0.604 0.711 0.801 

total 0.641 0.848 0.874 

Learning Gains 

Cognitive 

Learning Gains 
0.524 0.718 0.814 

Affective 

Learning Gains 
0.656 0.871 0.905 

Skill-Based 

Learning Gains 
0.515 0.705 0.810 

Higher-Order 

Learning Gains 
0.519 0.763 0.842 

Comparative 

Gains 
0.543 0.737 0.826 

Self-Reflection 

on Learning 

Progress 

0.512 0.715 0.802 

total 0.545 0.824 0.849 
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As shown in Table 2, the measurement indicators demonstrate adequate reliability and validity, 

supporting the use of the constructs in the structural model. 

                       Table 4     

                       The Report of Correlation Analysis        

 
Cognitive 

Load 
Adaptivity 

Learning 

Gains 

Cognitive Load 0.756   

Adaptivity 0.611** 0.801  

Learning Gains 0.726** 0.578** 0.738 

                                  Correlation is significant at the 0.01 level (2 tailed)   .**  

Table 4 presents the correlation coefficients between the constructs of Cognitive Load, 

Adaptivity, and Learning Gains. The results show significant positive correlations between all 

constructs. Cognitive Load and Adaptivity have a moderate correlation of 0.611, which is 

statistically significant at the 0.01 level. Similarly, Cognitive Load and Learning Gains show a 

strong positive correlation (r = 0.726), reflecting a substantial linear association between the 

two measures. The correlation between Adaptivity and Learning Gains is moderate at 0.578, 

suggesting that perceived adaptivity is also positively related to learning gains. The 

interpretations of correlation strengths follow the guidelines suggested by Cohen (1988) and 

Schober et al. (2018). 

Although detailed statistical results are presented in Tables 1–7, the primary findings of 

the study are summarized visually in the simplified SEM diagrams (Models 1 & 2). These 

figures highlight the significant structural relationships among the main constructs and provide 

an intuitive overview of the model results, while the tables are retained to ensure transparency 

and statistical completeness. 

Figure 1 

The Schematic Depiction of Path Coefficient Values (Model 1) 

 

Figure 2 

T-values for Path Coefficient Significance (Model 1) 
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   Table 6 

   The Fit Indices of the First Model 

     R2 Q2 

Learning Gains 0.481 0.192 

     GOF=√0.624 ∗ 0.481 =0.548 

 

Model Fit Indicators: R², Q², and GOF for Learning Gains Table 6 provides key model fit 

indicators for Learning Gains, including R², Q², and the Goodness of Fit (GOF). The R² value 

for Learning Gains is 0.481, indicating that approximately 48.1% of the variance in learning 

gains is explained by the model. The Q² value of 0.192 suggests a moderate predictive relevance 

for the model. The GOF is calculated as 0.548, using the formula √0.624 ∗ 0.481, reflecting 

an acceptable overall model fit. This combination of R², Q², and GOF values supports the 

robustness of the model in explaining and predicting learning gains . 

Table 5 

Path Analysis Results 

Paths Path 

Coefficient 

T Statistics Test Results 

Cognitive Load → Learning Gains 0.794 21.485 Supported 

Adaptivity → Learning Gains 0.581 13.466 Supported 

Table 5 presents the results of the path analysis for Cognitive Load and Adaptivity predicting 

Learning Gains. The path coefficient from Cognitive Load to Learning Gains is 0.794 with a 

T-statistic of 21.485, indicating a strong and statistically significant positive relationship, which 

is supported. Similarly, the path coefficient from Adaptivity to Learning Gains is 0.581 with a 

T-statistic of 13.466, also showing a positive and significant relationship, which is likewise 



Technology Assisted Language Education TALE 

 

 

 

 

 

97 

 

          Volume 3. Issue 4. 2025. Pages 82 to 110. 

 
supported. These results suggest that both cognitive load and adaptivity positively influence 

learning gains, confirming the model’s relevance. 

Figure 3 

The Schematic Depiction of Path Coefficient Values (Model 2) 
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Figure 4 

T-values for Path Coefficient Significance (Model 2) 

 

 

   Table 6 

   The Fit Indices of the Second Model 

     R2 Q2 

Cognitive Learning Gains  0.571 
0.289 

Affective Learning Gains  0.520 0.221 

Skill-Based Learning Gains  0.494 
0.208 

Higher-Order Learning Gains  0.457 
0.185 

Comparative Gains  0.382 
0.176 

Self-Reflection on Learning Progress  0.535 
0.243 

            GOF=√0.564 ∗ 0.493 =0.527 
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Table 6 provides the R², Q², and Goodness of Fit (GOF) values for the sub-dimensions of 

Learning Gains, including Cognitive Learning Gains, Affective Learning Gains, Skill-Based 

Learning Gains, Higher-Order Learning Gains, Comparative Gains, and Self-Reflection on 

Learning Progress. The R² values for these sub-dimensions range from 0.382 to 0.571, 

indicating varying levels of variance explained by the model. Specifically, Cognitive Learning 

Gains has the highest R² value of 0.571, suggesting that the model explains 57.1% of the 

variance in cognitive learning gains, while Comparative Gains has the lowest R² at 0.382. The 

Q² values, which measure predictive relevance, range from 0.176 to 0.289, with Cognitive 

Learning Gains showing the highest value of 0.289, indicating the model has moderate 

predictive relevance across these sub-dimensions. The overall GOF for the model, calculated 

as √0.564 ∗ 0.493, equals 0.527, suggesting an acceptable overall model fit. This combination 

of R², Q², and GOF values supports the validity and predictive relevance of the model in 

explaining the different dimensions of learning gains. 

Table 7 

Path Analysis Results  

Paths 

 

Path 

Coefficient 

T Statistics Test results 

 

Cognitive 

Load 
→ Cognitive Learning Gains 0.866 30.243 Supported 

Cognitive 

Load 
→ Affective Learning Gains 0.844 29.911 Supported 

Cognitive 

Load 
→ Skill-Based Learning Gains 0.746 22.367 Supported 

Cognitive 

Load 
→ Higher-Order Learning Gains 0.816 28.315 Supported 

Cognitive 

Load 
→ Comparative Gains 0.725 20.923 Supported 

Cognitive 

Load 
→ 

Self-Reflection on Learning 

Progress 
0.798 25.085 Supported 

Adaptivity → Cognitive Learning Gains  0.651 14.100 Supported 

Adaptivity → Affective Learning Gains  0.585 13.169 Supported 

Adaptivity → Skill-Based Learning Gains  0.533 11.505 Supported 

Adaptivity → Higher-Order Learning Gains  0.509 10.231 Supported 

Adaptivity → Comparative Gains  0.478 8.171 Supported 

Adaptivity → 
Self-Reflection on Learning 

Progress   
0.668 15.898 Supported 

 

For Cognitive Load, all paths to the sub-dimensions of learning gains are significant and 

supported. The path coefficient from Cognitive Load to Cognitive Learning Gains is 0.866 (T-



 

 

 

 

         Volume 3. Issue 4. 2025. Pages 82 to 110. 

 
Technology Assisted Language Education TALE 

100 

statistic = 30.243), indicating a very strong positive relationship. Similarly, the paths from 

Cognitive Load to Affective Learning Gains (0.844, T = 29.911), Skill-Based Learning Gains 

(0.746, T = 22.367), Higher-Order Learning Gains (0.816, T = 28.315), Comparative Gains 

(0.725, T = 20.923), and Self-Reflection on Learning Progress (0.798, T = 25.085) are all 

statistically significant, demonstrating that Cognitive Load positively influences all sub-

dimensions of learning gains. For Adaptivity, all paths to the learning gains sub-dimensions are 

also significant and supported. The path from Adaptivity to Cognitive Learning Gains is 0.651 

(T = 14.100), while the path to Affective Learning Gains is 0.585 (T = 13.169), indicating 

moderate positive relationships. The path coefficients for Adaptivity to Skill-Based Learning 

Gains (0.533, T = 11.505), Higher-Order Learning Gains (0.509, T = 10.231), and Comparative 

Gains (0.478, T = 8.171) are smaller but still significant, suggesting moderate positive 

influences. The strongest path for Adaptivity is to Self-Reflection on Learning Progress (0.668, 

T = 15.898), indicating a strong relationship.  

Discussion 

This research examined the relationships between cognitive load, adaptivity, and learning 

outcomes in AI-personalized learning environments incorporating AR for lower-intermediate 

EFL learners. The results indicated that cognitive load had a greater impact than adaptivity on 

learning outcomes. Adaptivity, although impactful, had a somewhat less influence on the same 

outcomes. More precisely, the study's results indicate a substantial association between 

cognitive load and learning gains, consistent with the predictions of Cognitive Load Theory 

(Sweller, 2011). This idea posits that when learners' cognitive resources are overwhelmed, their 

ability to absorb information efficiently diminishes, leading to reduced learning results. The 

findings also support previous studies on the role of cognitive load in interactive and multimedia 

learning settings. For example, Liu et al. (2021) revealed that increased cognitive load from 

intricate multimedia presentations in AR environments resulted in diminished recall and lower 

learning performance. Similarly, Candido and Cattaneo (2025) found that extraneous cognitive 

load in multimedia learning can hinder knowledge acquisition. Moreover, Sweller et al. (2011) 

also emphasized that excessive cognitive burden from poorly designed instructional materials 

negatively affects learning outcomes. These findings underscore that unnecessary cognitive 

load, whether from inadequately designed educational materials or suboptimal teaching 

methods, might hinder the learning process. 

The results emphasize that the inherent complexity of the learning material significantly 

influences learning outcomes, a finding consistent with Cognitive Load Theory, which posits 

that high element interactivity and intrinsic cognitive load can constrain learning when 

instructional materials exceed learners’ processing capacity (Sweller, 1988; Sweller et al., 

2011). This finding corresponds with recent research by Jamil et al. (2023), which showed that 

instructional materials aligned with learners’ existing cognitive abilities enhance engagement 

and lead to greater cognitive learning gains. The research indicates that when activities are 

suitably hard and align with the learner's zone of proximal development (Vygotsky, 1978), they 
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may optimize relevant load, hence fostering profound cognitive processing. This sort of load 

facilitates the development of new schemas and eventually boosts learning. The study's results 

indicate a substantial adverse effect of total perceived cognitive load on learning outcomes. 

When learners see their tasks as cognitively burdensome, it may result in irritation, anxiety, or 

disengagement, which, as shown by Alvandi et al. (2025), may impede self-regulated learning 

and emotional learning outcomes. The negative correlation between perceived cognitive load 

and learning gains observed in the present study (see Table 4) is consistent with Skulmowski 

and Xu (2022), who argued that elevated extraneous cognitive load in digital and online 

learning environments can reduce learners’ motivation to engage in learning activities, thereby 

negatively affecting academic outcomes. In AI-driven AR learning settings, relevant load was 

seen to favorably affect skill acquisition outcomes. Germane load refers to the cognitive 

resources that learners allocate to comprehend and organize incoming knowledge. The positive 

relationship between adaptivity and learning gains identified in the present study (see Figures 

3 & 4) corroborates the findings of Huang and Mok  (2025)., who reported that learning systems 

that effectively promote active engagement and problem-solving support learners in achieving 

higher levels of skill-based learning and advanced cognitive abilities. 

When comparing the structural path coefficients in the present study, cognitive load 

exhibited a stronger association with learning outcomes than adaptivity. Nevertheless, 

adaptivity still demonstrated a meaningful relationship with learning outcomes, with 

engagement in adaptive learning and feedback effectiveness emerging as the most influential 

subfactors of adaptivity (see Table 4 / Figures 3 & 4). The present findings are conceptually 

consistent with prior experimental research by Mejeh et al. (2024) as well as Teng and Huang 

(2025), which demonstrated that individualized learning environments providing timely and 

accurate feedback are associated with improved cognitive and emotional learning gains. 

Although these studies employed experimental designs and focused on learning gains rather 

than adaptivity, their results support the broader notion that personalized and responsive 

learning features—closely related to perceived adaptivity—are beneficial for learner outcomes. 

Furthermore, learners’ perceptions of adaptivity play a critical role in shaping higher-order 

learning outcomes, as Faber et al. (2024) demonstrated that learning environments perceived as 

adaptable—particularly those tailored to learners’ specific needs—significantly enhance 

engagement and self-reflection on learning progress. Learners who recognize that the system 

customizes the learning experience to their individual needs are more likely to be intrinsically 

motivated to tackle challenging tasks and reflect on their learning, thereby enhancing their 

critical thinking and problem-solving abilities. 

Nonetheless, involvement with adaptive learning, while positively associated with learning 

gains, had a lesser impact relative to the other subfactors. This indicates that although learner 

involvement is significant, it is not the only factor influencing learning gains. The quality and 

efficacy of the adaptive characteristics are more crucial in determining results. Theodorio 

(2024) contend that involvement is crucial, although it should be integrated with meticulously 

crafted instructional methodologies and tailored interventions to achieve optimum learning 
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results. Similarly, Jaboob et al. (2024) noted that adaptive systems fostering active engagement 

via tailored learning pathways significantly enhance learning results compared to systems that 

only modify information without addressing the learner's individual requirements and progress. 

The examination of the impact of cognitive load and adaptivity on learning outcomes is 

notably important inside AI-enhanced augmented reality settings. The discovery that cognitive 

load significantly impacts learning outcomes more than adaptivity highlights the essential need 

to create learning environments that reduce cognitive overload while effectively calibrating 

difficulty to align with the learner's skill level. This outcome aligns with recent research by 

Gandolfi and Ferdig (2025), which indicated that an adaptive learning environment, while 

advantageous, cannot mitigate the effects of suboptimal task design that overwhelms the 

learner's cognitive capability. In summary, the research offers significant insights into the 

impact of cognitive load and adaptability on learning outcomes in AR settings for EFL learners. 

While adaptivity does play a role in shaping learning outcomes, the findings indicate that 

cognitive load is a more critical determinant of learner performance. Specifically, managing 

cognitive load effectively can enhance learners’ engagement, facilitate skill acquisition, and 

promote higher-order learning outcomes, such as problem-solving and application of language 

skills in realistic contexts. These results underscore the importance of not only designing 

adaptive learning environments but also carefully structuring instructional materials and 

activities to align with learners’ cognitive capacities. 

For English language pedagogy, these findings have several practical implications. First, 

instructors and curriculum designers should consider integrating AI-powered AR tools that 

dynamically adjust content difficulty, pacing, and modality based on individual learners’ 

cognitive load. Such tools can help ensure that learners are challenged sufficiently without 

becoming overwhelmed, which is crucial for maintaining motivation and sustaining learning 

over time. By monitoring and modulating cognitive load, teachers can create more effective 

and personalized learning experiences that support vocabulary retention, grammar 

comprehension, reading and listening fluency, and communicative competence in authentic 

contexts. Moreover, adaptive AR systems can facilitate differentiated instruction by providing 

tailored scaffolding for learners with varying proficiency levels. For example, novice learners 

may receive additional guidance, simplified tasks, or multimodal cues, while more advanced 

learners can engage in complex problem-solving activities or collaborative language practice. 

This individualized approach not only enhances immediate learning outcomes but also fosters 

long-term language development by promoting learner autonomy, self-regulation, and 

sustained engagement. Ultimately, leveraging AI-powered AR technologies with careful 

attention to cognitive load management offers a promising avenue for transforming EFL 

instruction, enabling more efficient, effective, and learner-centered pedagogical practices. 
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Conclusion 

This research investigated the impact of cognitive load and adaptivity on learning outcomes in 

AI-personalized learning environments that incorporate augmented reality (AR) for lower-

intermediate EFL learners. A key finding of this study is that cognitive load exerts a greater 

influence on learning gains than adaptivity, highlighting the central role of cognitive processing 

in AI-enhanced AR learning. Specifically, intrinsic load, germane load, and extraneous load 

significantly influenced learners' cognitive and emotional outcomes, whereas total perceived 

cognitive load negatively affected learning gains. Although adaptivity—including feedback 

efficacy, system customization, and learner perceptions of adaptivity—also contributed to 

learning outcomes, its effect was comparatively smaller than that of cognitive load. 

The novelty of this study lies in its systematic examination of how different components 

of cognitive load interact with adaptive features in AI-powered AR environments to influence 

EFL learning outcomes. By disentangling the relative contributions of cognitive load and 

adaptivity, the study provides new insights into the design principles of personalized learning 

systems. Specifically, it demonstrates that reducing unnecessary cognitive load while ensuring 

tasks are appropriately challenging can maximize engagement, skill acquisition, and overall 

learning effectiveness. At the same time, adaptive features such as individualized feedback and 

system responsiveness are needed to be carefully aligned with cognitive load management to 

fully enhance their impact. 

This study emphasizes that cognitive load should remain a central consideration in 

instructional design, even in the context of emerging AI and AR technologies. According to the 

results (Figures 3 and 4), learners achieve the greatest gains when they are neither overwhelmed 

by irrelevant information nor under-stimulated by tasks that exceed their current cognitive 

capacity. Thus, the most effective AI-powered AR learning systems are those that balance 

cognitive load, provide timely feedback, and deliver individualized experiences. 

Finally, optimizing cognitive load in conjunction with adaptive learning strategies can 

substantially enhance the educational experience, offering educators and instructional designers 

practical guidance for developing AI- and AR-based learning tools. Future research should 

continue to explore the dynamic interactions between cognitive load and adaptivity, particularly 

their effects on long-term learning and the moderating role of individual learner differences. 

Overall, by providing actionable insights for the development of future educational 

technologies aimed at enhancing cognitive engagement, learning efficiency, and skill 

development, this study makes a novel contribution to the growing field of personalized 

learning in AR environments. 

This research illustrates that cognitive load has a big effect on how much you learn in AI- 

AR settings. How well EFL students understand and remember things is directly affected by 

cognitive load, especially internal, external, and relevant load. The results show that improving 

learning outcomes can be achieved by lowering brain load that isn't needed while still pushing 

students in the right way. In line with Mayer's multimedia principles (2009), educational 
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technologies should focus on reducing unnecessary load by making content and visual design 

simpler. This will help students focus on important tasks without being interrupted. Adapting 

the level of challenge to each learner's needs can also help keep the right amount of internal 

load, which keeps students from getting too overwhelmed and keeps them interested. The study 

also talked about how important it is for personalized learning methods to be able to change. 

Cognitive load had a bigger effect on learning gains than adaptivity. However, individual 

feedback, system personalization, and how learners saw adaptivity were all very important in 

making them more engaged. As Hattie and Timperley point out, to get the most out of these 

effects, AI systems should give individuals fast, personalized feedback that helps them figure 

out their strengths and weaknesses. AI can also change learning paths based on how each person 

is doing, making sure that students are always pushed without being too much. Giving students 

chances to think about their progress and ways of learning can also help them become more 

engaged and better able to control their own behavior. For AI-driven AR worlds to work, they 

need to have flexible features and ways to handle brain load. AR settings should be made with 

the user in mind, with material that is both engaging and not too hard to understand. Progressive 

building in AR tasks, where the level of difficulty rises as students get better, makes sure that 

they are properly pushed. Gamification features like keeping track of your progress and giving 

prizes can also make people more interested, which can lead to higher-order learning gains and 

drive. And finally, the results show that we need to do more study into how flexible AR learning 

settings affect people in the long run. In the future, researchers should look into how differences 

between people, like what they already know and how motivated they are, affect how cognitive 

load, adaptability, and learning results interact with each other. Cross-cultural studies could also 

help us understand how different types of students use flexible learning tools. This kind of study 

can help improve the design of AR learning tools so that they work well for a wide range of 

people and situations. 

This work offers significant insights into the effects of cognitive load and adaptability on 

learning outcomes in AI-personalized augmented reality settings. Nevertheless, there are a 

number of constraints that should be taken into account, as they also indicate potential areas for 

future research. This research used self-report measures, which may not consistently represent 

learners' authentic cognitive experiences or their real learning results. To mitigate this 

restriction, further research should include more objective measures of cognitive load, including 

physiological markers (e.g., eye-tracking or heart rate variability) or performance-based 

evaluations of learning. Furthermore, this study took place in English language institutions, 

focusing on EFL learners. Future research could extend this study to include learners from 

different disciplines to see if the findings hold across various academic domains. Additionally, 

the study focused on a short-term timeframe, with data collected during a single semester. Long-

term retention and the transfer of skills to real-world contexts are critical aspects of effective 

learning, and future studies could investigate these aspects by conducting longitudinal research. 

Tracking learners’ progress over an extended period would offer insights into how AI and AR 

environments influence long-term learning outcomes, such as the retention of language skills 
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or the ability to apply knowledge in real-life scenarios. Finally, the study did not account for 

individual learner characteristics, such as motivation, prior knowledge, or learning preferences, 

which may play a significant role in how learners interact with AI-powered AR systems. Future 

research may explore how individual differences, including learner motivation, self-regulated 

learning skills, and prior knowledge, affect the experience of cognitive load and the 

effectiveness of adaptive learning features. 
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